If it's not what You are looking for type in the equation solver your own equation and let us solve it.
255-16x^2=0
a = -16; b = 0; c = +255;
Δ = b2-4ac
Δ = 02-4·(-16)·255
Δ = 16320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16320}=\sqrt{64*255}=\sqrt{64}*\sqrt{255}=8\sqrt{255}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{255}}{2*-16}=\frac{0-8\sqrt{255}}{-32} =-\frac{8\sqrt{255}}{-32} =-\frac{\sqrt{255}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{255}}{2*-16}=\frac{0+8\sqrt{255}}{-32} =\frac{8\sqrt{255}}{-32} =\frac{\sqrt{255}}{-4} $
| -5y+(-6)=-9 | | `30+2k+5k=100` | | 120=-8(5b-5) | | 6m-6=6m+5 | | 6m-6=6m-5 | | 6x-7+2x=-3 | | −(6x+1)=13 | | 27+23x+4=30x+3 | | 0.4x3.7= | | 35+53+x=360 | | 445=35x | | 3t=2+5 | | −x+3=9 | | 5(1+6k)= | | 6y+9=3(2y+9) | | t5+3=9 | | -y-4=16 | | 13=-8y-2 | | 5/9a-1/3=3 | | s+20=−16 | | (-1/2)y-13=15 | | (7+5i)^2=24 | | -(1/2)y-13=15 | | -7-x/5=12 | | 3x-4(x+8)=2(x-3) | | 2x+30+76=180 | | –17=–2m | | 4m^2-22m+24=m^2-5m | | -30-10x=-36-8x | | L2×w2=62 | | 2-5(x+5=3(x-2)-1 | | 43=|15-3a| |